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Problem Definition: We consider the problem of demand learning and pricing for retailers who offer

assortments of substitutable products that change frequently, e.g., due to limited inventory, perishable or

time-sensitive products, or the retailer’s desire to frequently offer new styles.

Academic/Practical Relevance: We are one of the first to consider the demand learning and pricing

problem for retailers who offer product assortments that change frequently, and we propose and implement

a learn-then-earn algorithm for use in this setting. Our algorithm prioritizes a short learning phase, an

important practical characteristic that is only considered by few other algorithms.

Methodology: We develop a novel demand learning and pricing algorithm that learns quickly in an

environment with varying assortments and limited price changes by adapting the commonly used marketing

technique of conjoint analysis to our setting. We partner with Zenrez, an e-commerce company that partners

with fitness studios to sell excess capacity of fitness classes, to implement our algorithm in a controlled field

experiment to evaluate its effectiveness in practice using the synthetic control method.

Results: Relative to a control group, our algorithm led to an expected initial dip in revenue during the

learning phase, followed by a sustained and significant increase in average daily revenue of 14-18% throughout

the earning phase, illustrating that our algorithmic contributions can make a significant impact in practice.

Managerial Implications: The theoretical benefit of demand learning and pricing algorithms is well

understood – they allow retailers to optimally match supply and demand in the face of uncertain pre-season

demand. However, most existing demand learning and pricing algorithms require substantial sales volume

and the ability to change prices frequently for each product. Our work provides retailers who do not have

this luxury a powerful demand learning and pricing algorithm that has been proven in practice.
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1. Introduction

Within the last decade, demand learning and pricing has been at the forefront of academic research

in the revenue management field, and numerous algorithms have been proposed (see Section 1.1).

Most of these algorithms consider a single product - or in rarer cases, a single assortment of

products - that is offered throughout a finite selling season, and the retailer can offer different prices

for the product(s) to learn the demand at each price point and maximize total-season revenue.

Furthermore, most of these algorithms require a high frequency and volume of price changes in

order to reap the benefits of demand learning. Inherent in these two modeling choices are the

assumptions that (i) the retailer has substantial sales volume of each product, and (ii) the retailer

is able and willing to frequently change the price of each product. Interestingly, despite the plethora

of demand learning and pricing algorithms in the academic literature, non-promotion based retail

price changes were estimated to have occurred only once every 3.7 months between 2014-2017

(Cavallo (2018)), signaling that, in fact, many retailers have not adopted such algorithms.

We are motivated by conversations that we have had with numerous retailers who have yet to

implement demand learning and pricing algorithms. Although these retailers understand their po-

tential benefits, many of these retailers share similar sentiments. First, many products they sell

do not have substantial sales volume to reap the benefits of dynamic pricing. This appears to be

particularly common for retailers who offer assortments of products that change frequently, e.g.,

due to limited inventory, perishable or time-sensitive products, or simply the retailer’s desire to

frequently offer new styles; such settings are becoming more and more prevalent, especially in

e-commerce (e.g., Petro (2018)). Second, many retailers are unable or unwilling to change prices

multiple times within a single assortment due to technological constraints or concerns about nega-

tive customer perception or strategic consumer behavior (e.g., Garbarino and Lee (2003) and Haws

and Bearden (2006)). Some retailers have suggested that changing prices only at the beginning

of each new assortment - rather than changing prices within an assortment - is desirable because

their technology easily supports such price changes and/or they believe that timing price changes

with assortment changes would likely be better received by the customer.

With these characteristics in mind, we model customer demand using a contextual, attribute-

based multinomial logit (MNL) choice model and develop a demand learning and pricing algorithm

for the purpose of quickly learning consumer demand with minimal price changes to maximize

revenue when product assortments may change over time. Our algorithm sets a price for each

product at the beginning of each assortment which is offered to all customers who shop that

assortment. The retailer observes each customer’s purchase decision and can use this information

when choosing the prices for subsequent assortments. In these retail settings, it is necessary to

carry over any demand learning occurring from one assortment to the next assortment, and to do
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so, we assume that products can be fully characterized by a set of attributes; thus demand learning

occurs at the attribute-level as opposed to the product-level, allowing learning to be transferred to

newly offered products that share attributes with products from previous assortments.

Our algorithm follows a learn-then-earn approach, where at first the retailer chooses prices

to learn demand as quickly as possible, and then after the retailer is sufficiently confident in

the estimated demand model, the retailer prices to earn, with the goal of maximizing revenue

(equivalently, profit). During the pricing to learn phase, we adapt techniques from conjoint analysis

- a method that is common in the marketing literature and most often used by brands to help

make product design decisions - to offer prices that maximize the expected information gain in each

assortment, ultimately learning the parameters of the demand model as quickly as possible. During

the pricing to earn phase, we price in a greedy fashion by assuming that the current parameter

estimates are the true parameters and maximizing revenue under this assumption. Regardless of

the phase, at the end of each assortment our algorithm updates the demand model parameter

estimates with the current assortment’s observed purchase data.

For the development and implementation of our work, we collaborated with Zenrez, an e-

commerce company that partners with fitness studios across the United States and Canada to sell

excess capacity of fitness studio classes. Every night at 9:00pm, Zenrez posts classes (i.e., products)

that have remaining capacity for the following day and offers them at a discounted price via a

widget located on the partner studios’ webpages or app. When a user views the widget, they see all

next-day classes offered by Zenrez for that fitness studio; see Figure 1 for an example. Each class

is characterized by features such as class type (e.g., yoga, spin, etc.), time of day, and duration.

The assortment of classes changes each day, and prices can vary across assortments but are fixed

within each assortment in order to avoid negative customer perception. Zenrez has the flexibility

to choose an integer price for each class within a studio-specified interval and earns a commission

proportional to the selling price for each class sold via their widget.

To implement our demand learning and pricing algorithm, we developed a fully-automated pric-

ing tool at Zenrez. It is run automatically every day for a given studio, setting prices for the

following day’s assortment of classes. To evaluate the effectiveness of our algorithm, we conducted

a three-month controlled field experiment where prices for studios in the treatment group were

set according to our algorithm while prices for studios in the control group were set according to

Zenrez’s baseline pricing policies, and we used synthetic controls (Abadie et al. 2010) to estimate

the treatment effect: percent increase in average daily revenue between studios in the treatment

group compared to the control group. Relative to studios in the control group, our algorithm led

to an 8.5% increase in average daily revenue over the three-month experiment. The average effect

on revenue balances an expected initial dip in revenue experienced when pricing to learn followed
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Figure 1 Example of Zenrez’s widget, showing the assortment of classes offered for partner stu-

dio Maha Yoga on Monday, August 3rd. Retrieved from More Than Mary, 2015,

http://www.morethanmary.com/2015/08/03/new-fitness-apps/.

by a significant increase in revenue (14-18%) when pricing to earn; it is reasonable to expect that

gains of similar magnitudes would endure over future periods if the algorithm were run for longer.

Our main contributions in this paper are three-fold. First, we contribute to the nascent rev-

enue management literature for this prevalent retail setting where product assortments change

frequently, e.g., due to limited inventory, perishable or time-sensitive products, or the desire to

frequently offer new styles. To account for many retailers’ desire to not change prices multiple times

within a single assortment, we use the beginning of each assortment change as a natural time in

which to change prices. We know of only one other paper on demand learning and pricing for the

multi-product, discrete choice setting that also accounts for varying assortments (Javanmard et al.

(2020)); we compare our work with Javanmard et al. (2020) in Section 1.1 and present simulations

comparing our algorithm’s performance with theirs in Section 3.1. We hope that our work encour-

ages other researchers to consider operations and marketing problems targeted for retailers with

frequent assortment changes, limited sales volume, and/or an interest in limited price changes.

Second, we develop a novel learn-then-earn algorithm - Fast Learning and Pricing for Varying

Assortments - that learns quickly in an environment with varying assortments and limited price

changes by adapting the commonly used marketing technique of conjoint analysis to our setting.

A short learning phase is particularly important in our setting where retailers want to minimize
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negative customer perception from volatile price experimentation, as well as for retailers who have

limited sales volume or a short selling season and thus cannot afford lengthy experimentation.

Furthermore, when external factors change that may influence demand model parameters, a short

learning phase allows retailers to restart the algorithm and quickly learn the new demand model

parameters. Most demand learning and pricing algorithms proposed in the academic literature do

not consider a short learning phase as an algorithmic characteristic and instead focus on asymptotic

analyses. We are one of the first to consider such an algorithmic characteristic in this retail setting,

as well as the first to employ conjoint analysis in demand learning and pricing. We hope that our

work encourages other researchers to consider the length of the learning phase and/or conjoint

analysis when developing learning and decision-making algorithms.

For our third contribution, we partner with Zenrez to estimate the effectiveness of our algorithm

in a controlled field experiment, and we illustrate how to use synthetic controls to estimate the

treatment effect, a popular method recently proposed to evaluate policy interventions. The results

of our field experiment illustrate that our algorithmic contributions can make a significant impact

in practice, and we hope that our work will inspire other retailers to implement our demand

learning and pricing algorithm. To the best of our knowledge, ours is the first paper to present the

implementation of a multi-product demand learning and pricing algorithm in practice.

1.1. Literature Review

Our paper contributes to the vast literature on demand learning and pricing. For a more in-

depth review of the relevant literature, we refer the reader to the extensive survey by den Boer

(2015); examples of more recent papers include Ban and Keskin (2020), Ferreira et al. (2018), and

Misra et al. (2019). The tension that motivates demand learning and pricing research is the classic

exploration-exploitation trade-off, which requires the retailer to learn customer demand in order

to identify revenue maximizing prices while minimizing revenue lost to pricing-to-learn rather than

pricing-to-earn. Our model and algorithm are differentiated from most others presented in this

literature in three critical ways: (i) we consider a multi-product, discrete choice setting with varying

product assortments, (ii) we prioritize a short learning phase so that the retailer only engages in

limited price experimentation, and (iii) we implement and evaluate our algorithm in practice.

Multi-product, Discrete Choice with Varying Assortments: First, we consider a multi-

product, discrete choice setting where the assortment of substitutable products offered to customers

changes over time. This setting necessitates modeling product attributes (context) and learning

attribute-level - as opposed to product-level - demand parameters in order to transfer learning

to newly offered products in each assortment. Most multi-product demand learning and pricing

algorithms are not contextual and thus cannot be applied to settings like ours where the assortment
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changes frequently. Javanmard et al. (2020) is the only other work in this setting that utilizes

a parametric demand model; in fact, we use an identical utility model with heterogeneous price

sensitivities and customer demand described by a multinomial logit (MNL) model. That said, there

are some key differences in the retail setting and motivation of our works that lead to different

algorithmic contributions. In particular, Javanmard et al. (2020) are motivated by retailers who

can change prices for every customer arrival whereas we are motivated by retailers who want to

employ minimal price changes. In addition, Javanmard et al. (2020) allows prices to be selected

from R+ (i.e., a continuous and unconstrained set), whereas we require prices to be selected from

a finite set, a common practice among many retailers.

Regarding algorithmic contributions, Javanmard et al. (2020) propose an algorithm (M3P) that

alternates between learning and earning phases, where in the learning phase it selects random

prices, and in the earning phase it selects prices that maximize revenue based on the parameter

estimates derived from the learning phases. Our algorithm differs in three respects: (i) we follow

a learn-then-earn approach, which results in fewer periods where the retailer needs to engage in

price exploration, (ii) during our learning phase, we adapt techniques from conjoint analysis to

select prices that maximize the expected information gain in order to learn quickly, and (iii) during

our earning phase, we continue to passively learn by updating our parameter estimates with new

observations. Finally, Javanmard et al. (2020) evaluate their algorithm via an asymptotic analysis

where T grows very large and show strong T -period regret, whereas we implement our algorithm

in practice (small, finite T ) and evaluate its performance in a controlled field experiment. As a

comparison, we present the performance of both algorithms via numerical simulations in Section

3.1.

Miao and Chao (2020) also consider a parametric, demand learning and pricing problem for the

multi-product, discrete choice setting where the assortment of substitutable products offered to

the customer can change over time, selected from a static set of N products in each period. They

also use an MNL demand model but use product-specific mean utilities and price sensitivities as

opposed to attribute-specific.

Very recently, the multinomial logit contextual bandit model was introduced in Oh and Iyengar

(2019a); Oh and Iyengar (2019a), Oh and Iyengar (2019b), and Chen et al. (2020) study a demand

learning and assortment optimization problem under the MNL contextual bandit model. Our model

can be cast as an MNL contextual bandit model; our contribution related to these recent papers

is that we study price as opposed to assortment optimization. They develop upper confidence

bound and Thompson sampling based policies that utilize Fisher’s information; we also use Fisher’s

information in the learning phase of our pricing algorithm.
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Focus on Short Learning Phase: Most demand learning and pricing papers do not consider

a short learning phase as an algorithmic characteristic and instead focus solely on asymptotic

analyses. In fact, despite the attractiveness of limited price changes in practice, we know of only

three other papers that consider such a characteristic in a demand learning and pricing algorithm–

Cheung et al. (2017), Chen and Chao (2019), and Perakis and Singhvi (2020)–each of which consider

a single product setting as opposed to our multi-product setting. Cheung et al. (2017) and Chen

and Chao (2019) constrain the number or timing of price changes, whereas Perakis and Singhvi

(2020) incorporate the desire for limited price changes when learning non-parametric demand.

Similar to Perakis and Singhvi (2020), we also do not impose a constraint on the number of

price changes and instead incorporate the desire for limited price experimentation in our algo-

rithmic design. This led us to utilize components of conjoint analysis in the learning phase of

our algorithm, and our paper is the first to integrate conjoint analysis with demand learning and

pricing, increasing the velocity at which learning can occur. Conjoint analysis is most commonly

used to construct surveys or choice experiments that inform product design decisions. A subset

of the broader field is devoted to choice-based conjoint analysis, often assuming MNL demand. In

choice-based conjoint analysis, products are characterized by a set of attributes and the researcher

constructs a hypothetical choice set of substitutable products with variation in their attributes.

The researcher then asks respondents to select their favorite from among the set of substitutable

(hypothetical) products. Using observed choices, the researcher can then estimate customer utility

for each of the product attributes. Refer to Raghavarao et al. (2010) for more details.

To select the hypothetical choice sets used in these choice experiments, choice-based conjoint

analysis uses principles of optimal experimental design to maximize information gain as measured

by the determinant of the Fisher information matrix. One key challenge in doing so is that the

optimal design is a function of the unknown parameters of the utility model. To address this

challenge, marketers historically initialized the parameters at zero. Huber and Zwerina (1996) were

the first to improve design efficiency by introducing a pre-experiment, which can be used to initialize

parameters at more meaningful values. Sandor and Wedel (2001) built upon their work by using

a Bayesian approach that incorporates managers’ priors and accounts for their uncertainty. Later

work by Sandor and Wedel (2005) demonstrated significant value in being able to observe choice

behavior across several distinct choice experiments. We extend these ideas to our demand learning

and pricing setting by considering each assortment to be a ‘choice set’ and allowing the algorithm

to choose only the value of the price attribute for each product in the choice set; all other attributes

are selected exogenously by the firm. Our algorithm is able to incorporate prior information when

it is available and updates utility model parameter estimates after each choice set. In this way, we

are able to sequentially observe choices across a range of choice sets and update our parameter
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estimates to reflect observed demand. Although our algorithm is sequential in nature, it differs

from what are known as “adaptive designs” in the conjoint analysis literature, which change the

designs for a single respondent based on his or her previous responses (e.g., Sauré and Vielma

(2018)); this work would be more appropriate to use for a personalized pricing application.

Price Optimization Field Experiments: Despite the growing number of academic papers

presenting new pricing algorithms, there have been very few documenting the implementation and

validation of pricing algorithms in practice via field experiments. Caro and Gallien (2012) develop

and implement a markdown price optimization tool at Zara. Besbes et al. (2020) develop a price

optimization tool for rotable spare parts and evaluate its effectiveness at an aircraft OEM. Both

of these papers dynamically change the price of products during the season but do not consider

varying assortments, and both use a demand model where each product’s demand is independent

of the other products in the assortment. Fisher et al. (2018) address price optimization in light

of competitor pricing and conduct a field experiment to evaluate their algorithm at Yihaodian;

they consider a discrete choice setting, as do we, but they do not consider varying assortments.

Ferreira et al. (2016) develop a price optimization tool for Rue La La that considers both varying

assortments and the multi-product demand setting, albeit not discrete choice. Most importantly,

none of these papers consider demand learning - and therefore the exploration-exploitation trade-

off - in their algorithm or implementation. Thus for each case, the objective of their algorithm is to

maximize revenue or profit, whereas our algorithm balances the exploration-exploitation trade-off

by first maximizing information gain and subsequently maximizing revenue. We are aware of only

one other paper that implements a demand learning and pricing algorithm in practice, Cheung

et al. (2017), which consider a single-product setting without varying assortments.

2. Model

We consider a retailer who sells a varying assortment of substitutable products to customers over

a selling season of length T . We are motivated by settings where T is relatively small–O(10) or

O(100)–compared to most demand learning and pricing models in the literature which study the

asymptotic setting where T grows very large. In each time period t= 1, ..., T , the retailer offers a

set of Nt products; each product can be fully characterized by an observable and exogenousvector

of d features (attributes), xit ∈Rd for product i ∈ {1, ...,Nt}, where xit = {x1it, ..., xdit}. We allow

for a no purchase (outside) option encoded as product i= 0 for each assortment with d-dimensional

vector x0t = ~0 ∀t. The feature vectors of products offered in different periods vary and thus we

use “period t” and “assortment t” interchangeably. For each assortment t, the retailer selects price

vector pt = {p0t, p1t, ..., pit, ..., pNtt} where the price pit for product i is selected from a finite, discrete

set of possible prices Pit, a common practice for many retailers; for ease of notation, we define
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Pt to be the finite set of all possible price vectors pt which simply includes every combination of

possible prices for each product. For the outside option i= 0, we define p0t = 0 ∀t (or equivalently,

P0t = {0}) without loss of generality and for notational convenience. Note that prices change from

period to period, but not within a single period; this reflects many retailers’ interests of changing

prices only when assortments change as opposed to dynamically changing prices within a fixed

assortment of products. Note that although our model and algorithm are motivated by the setting

where prices do not change for a given assortment, allowing for such changes could be incorporated

in our model formulation. For example, if a retailer was willing and able to change the price vector

for an assortment three times, the assortment could be allocated three periods in our model, each

offering the same set of products having identical feature vectors. Such a formulation would be

particularly useful for retailers who - although they may not conduct frequent assortment changes

- prefer only changing prices within an assortment a few times, yet still want to reap the benefits

of demand learning and pricing.

We assume zero cost per product without loss of generality and for ease of exposition; note that

this equates revenue to profit. We also assume that demand can be met in each period. Unless

otherwise noted, consider all vectors to be column vectors. For convenience, we occasionally use

the notation (a,b) for vectors a∈Rd and b∈Rd to denote a column vector of length 2d where the

first d entries are a and the second d entries are b.

For customer j arriving in period t, we model her (random) utility from purchasing product i

as a linear function of its features and price, specifically

uijt =xᵀ
itβ

f −xᵀ
itβ

ppit + εijt . (1)

Here, βf and βp are fixed parameters that are unknown to the retailer at the beginning of the

season but can be learned throughout the season via observing purchase data; βf ∈ Rd reflects

the impact of features on utility whereas βp ∈ Rd incorporates feature-specific price sensitivities.

Since model parameters are defined with respect to features - as opposed to products - learning

the value of these parameters from observing sales of one product can benefit new products that

share some of the same features. Note that xᵀ
itβ

p is the price sensitivity of product i and thus our

model allows for heterogeneous price sensitivities across products. We let εijt ∀i, j, t be a random

component of utility and assume that it is drawn independently and identically from a standard

Gumbel distribution. We assume the customer purchases the product (including outside option)

that gives her the largest utility.

We note that our utility model is one specification of the well-known multinomial logit (MNL)

discrete choice model that has been widely used in academia and in practice (see, e.g., Talluri and
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van Ryzin (2005) and Elshiewy et al. (2017)) that includes product features; it is identical to the

utility model employed in Javanmard et al. (2020). The MNL model yields the following expression

for the probability of a customer purchasing product i when offered assortment t for all t= 1, ..., T

and i= 0, ...,Nt, which we will refer to as the demand model :

qit =
exp(xᵀ

itβ
f −xᵀ

itβ
ppit)∑Nt

l=0 exp(xᵀ
ltβ

f −xᵀ
ltβ

pplt)
. (2)

We define qt = {q0t, q1t, ..., qit, ..., qNtt}.

For each period t, let Mt be a Poisson random variable with (unknown) arrival rate λ representing

the number of customer arrivals in that period, i.e., the number of customers who shop assortment

t. We assume that Mt is independent and identically distributed across periods, and that demand

is independent across customers and periods; for many retailers such as those offering perishable or

time-sensitive products, this independence assumption is naturally satisfied. Further define Yit as

a random variable representing the number of customers who purchase product i in assortment t,

and note that
∑Nt

i=0 Yit =Mt. At the end of period t, the retailer observes the quantity of each item

purchased (the realizations of Yit ∀i = 0,1, ...,Nt), which we denote yt = {y0t, y1t, ..., yNtt} where

yit is the quantity of product i purchased in period t, and y0t is the number of customers who do

not purchase any items. We use mt =
∑Nt

i=0 yit to be the total number of customers who arrive in

period t, i.e., the realization of random variable Mt. Note that we are assuming that the retailer can

observe the number of customers who view the assortment and choose not to purchase, which is

realistic for many online retailers like Zenrez via tracking clickstream data; although not as precise

in the offline world, some brick-and-mortar retailers can estimate this using traffic patterns to the

store.

The problem faced by the retailer is to design a non-anticipatory algorithm that selects a price

vector pt for each assortment t= 1, ..., T in order to maximize the total revenue over the season.

To be specific, “non-anticipatory” refers to the restriction that the algorithm can use only prior

periods’ price, feature, and observed sales information (pt′ ,xit′∀i ∈ {1, ...,Nt′},yt′ ∀t′ < t) when

selecting a price vector for assortment t. This observed sales information enables the retailer to

learn the arrival rate λ and demand model parameters βf and βp, which in turn enables the retailer

to learn demand not only for the offered price and product, but also for other prices and for other

products that share some of the same features. Given our assumptions, we can write our objective

considering only a single customer in each period and maximizing the expected revenue earned

from that customer:

max
p1∈P1,...,pT ∈PT

T∑
t=1

qᵀtpt . (3)
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Although not explicitly included in the objective, our algorithm is inspired by many retailers’ desire

to limit price exploration, i.e., how long it takes to learn parameters βf and βp.

To summarize the sequence of events in our model, for each assortment t,

1. The retailer selects price vector pt ∈ Pt and offers Nt products with feature vectors xit for

i= 1, ...,Nt and price vector pt to all customers arriving during period t.

2. Each customer purchases at most one item.

3. The retailer observes yt and can use this observation along with all prior sales information

(pt′ ,xit′∀i ∈ {1, ...,Nt′},yt′ ∀t′ < t) when choosing the price vectors for subsequent assort-

ments.

3. Fast Learning and Pricing for Varying Assortments

In this section, we propose an algorithm - Fast Learning and Pricing for Varying Assortments -

to prescribe price vector pt in each period t after observing purchase behavior in the prior period.

Our algorithm follows a learn-then-earn approach, where at first the retailer chooses prices to learn

demand as quickly as possible, and then after the retailer is sufficiently confident in the estimated

demand model, the retailer prices to earn, with the goal of maximizing revenue. Algorithm 1

formally outlines our Fast Learning and Pricing for Varying Assortments algorithm. We start by

initializing parameters β̂f1 and β̂p1 to ~0 and initializing λ̂ > 0 to reflect the retailer’s prior belief

for the arrival rate λ; note that these initializations are only relevant for pricing decisions made

in period t= 1. The parameters λ̂, β̂ft and β̂pt ∀t= 1, ..., T will be used as empirical estimates of

the true parameters λ, βf and βp; in practice, the retailer could include prior information in the

initializations if available. Using similar notation, we will let q̂it be the purchase probability as

defined in Equation (2) and using current parameter estimates β̂ft and β̂pt . We initialize our pricing

phase as pricing to learn and specify a Boolean switching criteria test that will dictate when the

pricing phase switches to pricing to earn.

During the pricing to learn phase, our algorithm offers prices that maximize the expected in-

formation gain in each period in order to learn the parameters of the demand model as quickly as

possible. Specifically, in pricing to learn period t, Algorithm 1 selects the price vector pt from the

set of feasible price vectors Pt that maximizes the determinant of the Fisher information matrix,

which is the most common measure of information gain used in choice-based conjoint analysis.

In our application, Fisher information in period t is a measure of how much information we can

obtain about the unknown parameters (βf ,βp) from a sample of customer purchases, yt, drawn

from random variables Yit ∀i= 0,1, ...,Nt. Customer purchases are a function of the selected price

vector pt, highlighting the impact of the pricing decision on how much information one can learn.
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Algorithm 1: Fast Learning and Pricing for Varying Assortments

1 Input: Boolean switching criteria test, SWITCH ;

2 Initialize parameters: β̂f1 = β̂p1 =~0 and λ̂ > 0;

3 Initialize pricing phase = pricing to learn;

4 for t= 1, ..., T do
5 if pricing phase = pricing to learn then
6 Define zis = (xis,−xispis) ∀s≤ t. Offer price vector

7 p∗
t = arg maxpt∈Pt det
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8 end

9 if pricing phase = pricing to earn then

10 Offer price vector p∗
t = arg maxpt∈Pt
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;

11 end

12 Observe demand yt;

13 Estimate (β̂ft+1, β̂pt+1) using data observed through period t, i.e.,

(p∗
s ,xis∀i∈ {1, ...,Ns},ys ∀s≤ t):

(β̂ft+1, β̂
p
t+1) = arg maxβf ,βp
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;

14 Estimate λ̂ using data observed through period t: λ̂= 1
t

∑t

s=1ms;

15 if pricing phase = pricing to learn and SWITCH = TRUE then
16 pricing phase = pricing to earn;

17 end
18 end

Proposition 1: The Fisher information matrix for (βf ,βp) for the multinomial choice demand

model presented in (2) for τ periods is

I(βf ,βp) =
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(4)

The proof of Proposition 1 is presented in Appendix A. The inner summation characterizes the

Fisher information matrix for a single period t, and the outer summation considers all τ periods,

weighted by the number of customers who arrived in each period, mt. Note that calculating the

Fisher information matrix requires evaluating the demand model (2), which in turn requires knowl-

edge of parameters (βf ,βp); since these are unknown, Algorithm 1 uses their current estimated

values, (β̂ft , β̂
p
t ), to replace the probability that a customer purchases product i in period t, qit,
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with its estimated probability, q̂it. In addition, since the number of customers arriving in period t,

mt, is unknown at the beginning of the period, we replace mt with its expected value, E[Mt] = λ̂,

when selecting the price for period t. We note that λ̂ is simply the sample mean of the number of

customers who arrived in previous periods, since Mt ∼ Poisson(λ). Analogous to D-optimal designs

in choice-based conjoint analysis, we select prices to learn in Algorithm 1 by choosing the price

vector which maximizes the determinant of the Fisher information matrix, which has the intuitive

appeal of minimizing the volume of the confidence ellipsoid for the parameter estimates β̂ft and

β̂pt ; refer to Raghavarao et al. (2010) for further discussion.

Unfortunately, there are no computationally efficient methods to identify the price vector p∗
t that

maximizes the determinant of the Fisher information matrix. Therefore, when pricing to learn, one

can first try enumerating all possible price vectors in Pt and evaluating the determinant of the

Fisher information matrix for each one, choosing the price vector with the largest determinant; for

feasible price sets and assortments that are not too large, this approach provides an optimal solution

in a reasonable amount of time. In fact, for the implementation of the Fast Learning and Pricing

for Varying Assortments algorithm at Zenrez, we found that this approach was computationally

feasible for over 95% of the assortments, enabling us to calculate and use the optimal price vector.

If complete enumeration is computationally infeasible, then we suggest pursuing one or both of the

following two heuristics.

For the first heuristic, one can employ the methods of swapping, cycling, and re-labeling to

identify a solution; although optimality is not guaranteed, these heuristics are well-studied and

commonly used in conjoint analysis and are detailed in Sandor and Wedel (2001). For the sec-

ond heuristic, one can employ grid search by reducing the set of possible price vectors Pt to a

computationally-feasible size, evaluating the determinant of the Fisher information matrix for each

price vector in the reduced set, and choosing the one with the largest determinant. In our field ex-

periment with Zenrez, we used grid search for the < 5% of assortments where complete enumeration

was not computationally feasible.

During the pricing to earn phase, Algorithm 1 selects the price vector p∗
t from the set of feasible

price vectors Pt in a greedy fashion by assuming that the current parameter estimates β̂ft and β̂pt

are the true parameters and maximizing current-period revenue under this assumption:

p∗
t = arg max
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. (5)

Given our assumption that demand is independent and identically distributed across all customers

shopping assortment t, note that maximizing total revenue from assortment t is equivalent to

maximizing the expected revenue from a single customer shopping assortment t. We may also face
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computational challenges when pricing to earn. Thus, in order to solve (5), we recommend the

following approach. Similar to the pricing to learn phase, we first try enumerating all possible price

vectors in Pt and evaluating the expected current-period revenue of each one, choosing the price

vector with the largest expected revenue; for feasible price sets and assortments that are not too

large, this approach can solve (5) to optimality in a reasonable amount of time. In fact, for the

implementation of the Fast Learning and Pricing for Varying Assortments algorithm at Zenrez, we

found that this approach was computationally feasible for over 95% of the assortments, enabling us

to calculate and use the optimal price vector. If complete enumeration is computationally infeasible,

then we suggest pursuing one or both of the following two approaches.

For the first approach, we recommend using the parametric linear programming methodology

recently proposed in Sumida et al. (2021) to identify the optimal price vector; refer to Section 6.3

in Sumida et al. (2021) for a description of how to apply their methodology to our setting. For the

second approach, one can employ grid search by reducing the set of possible price vectors Pt to a

computationally-feasible size, evaluating the expected current-period revenue of each price vector

in the reduced set, and choosing the one with the largest expected revenue. This is a common

heuristic used in practice; see, e.g., Kannan et al. (2009), Iyengar et al. (2011), and Hosanagar

et al. (2008). In our field experiment with Zenrez, we used grid search for the < 5% of assortments

where complete enumeration was not computationally feasible.

Regardless of the pricing phase, at the end of each period our algorithm observes demand yt and

updates the parameter estimates λ̂, β̂ft+1 and β̂pt+1 with their maximum likelihood estimators using

all data observed through period t, (p∗
s ,xis∀i∈ {1, ...,Ns},ys ∀s≤ t). Thus we note that even when

pricing to earn, Algorithm 1 continues to passively learn and improve its parameter estimates.

For retailers who do not observe the number of customer arrivals mt in each period t (e.g., many

brick-and-mortar retailers), we refer the reader to Newman et al. (2014) for an estimation routine

that jointly estimates the arrival rate and parameters of the MNL model.

Finally, before advancing to the next period, our algorithm uses SWITCH - the Boolean switch-

ing criteria test specified as an input - to decide when to transition from the pricing to learn phase

to the pricing to earn phase. A simple switching criteria would be to pre-select the switching period

τ so that the pricing phase is pricing to learn for periods t= 1, ..., τ and pricing to earn for periods

t= τ + 1, ..., T . This approach is commonly used in other demand learning and pricing algorithms

that follow a learn-then-earn approach, e.g., Besbes and Zeevi (2012). Alternatively, we note that

any data observed through period t, i.e., (p∗
s ,xis∀i ∈ {1, ...,Ns},ys ∀s≤ t), could be used as an

input to SWITCH in order to help dynamically choose when to switch from the pricing to learn

phase to the pricing to earn phase.
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There are a variety of practical considerations that can be incorporated into the switching criteria

test. For example, retailers may choose to incorporate a notion of stability of parameter estimates:

if the parameters estimated by the algorithm using additional data begin to converge - i.e., they

do not change much given the current period’s observed demand - then the value of learning may

no longer outweigh the value of earning, signaling a good time to transition phases. Similarly,

retailers may choose to incorporate a notion of stability of prices: if the prices recommended by the

algorithm do not change when using recent periods’ parameter estimates, there may not be much

value in learning more precise parameter estimates. An additional consideration is the length of the

time horizon T ; a retailer facing a small time horizon T may want to switch phases earlier than a

retailer facing a much longer horizon. We describe our choice for SWITCH in our implementation

at Zenrez in Section 4.1. Finally, we point out that knowledge of the length of the time horizon

T is not required to run our algorithm, although it may be estimated and used as an input to

SWITCH if desired.

3.1. Comparison with M3P Algorithm

As described in Section 1.1, only one other paper (Javanmard et al. (2020)) presents a demand

learning and pricing algorithm, M3P, for a (nearly) identical setting to ours. M3P alternates be-

tween learning and earning phases in an episodic manner, where in each learning phase it selects

a random price vector for each customer, and in each earning phase it selects a price vector that

maximizes revenue based on the parameter estimates derived from the learning phases. Episode

k requires k + l customers, where l is a constant number of customers shown random prices in

the learning phase and k is a linearly increasing number of customers shown (expected) revenue-

maximizing prices in the earning phase. In this section, we compare the performance of our Fast

Learning and Pricing for Varying Assortments algorithm with the M3P algorithm for various

values of l via simulations.

For our simulations, we consider a retailer selling three products per assortment, i.e., Nt =

3 ∀t = 1, ..., T , plus an outside option. The set of possible prices Pit for each product i = 1,2,3

is {12,13,14,15,16,17,18}. Each of the three products is characterized by two features that take

values in [0,1], one of which interacts with price in the utility function; we also allow for price to

enter the utility function independently of product features. To implement this using our general

notation in Section 2, we used d= 3 features, where x1it ∈ [0,1], x2it ∈ [0,1], and x3it = 1 ∀i= 1,2,3

and t= 1, ..., T , with βf3 = 0 and βp2 = 0.

We conducted 200 simulations, where for each simulation, we first independently drew utility

model parameters βf1 ∼ Uniform(10,20), βf2 ∼ Uniform(10,20), βp1 ∼ Uniform(0,1), and βp3 ∼
Uniform(0,1). For each simulation and for each assortment t= 1, ..., T , we randomly selected fea-

ture xdit ∼ Uniform(0,1) for d = 1,2 and i = 1,2,3. We assume that mt = 20 customers arrive
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and make a purchase decision in each assortment t = 1, ..., T . Finally, for each simulation, each

customer j’s random component of utility, εijt, is drawn independently from a standard Gumbel

distribution for all i= 0, ...,3, j = 1, ...,mt, and t= 1, ..., T . Given the set of utility model parame-

ters, features, and realized random components of utilities (i.e., βf ,βp,xit, and εijt ∀i, j, t) drawn

independently for each of the 200 simulations, we implemented our Fast Learning and Pricing for

Varying Assortments algorithm and the M3P algorithm with four different values for the number

of customers in each learning phase - l= 1,5,10, and 15 - and compared their average performance

across all 200 simulations.

We implemented our Fast Learning and Pricing for Varying Assortments algorithm as specified

in Algorithm 1. For the switching criteria test (SWITCH ) input to our algorithm, we used an

identical test to what we used for our field experiment with Zenrez; please see Section 4.1 for details,

noting that we generated four hypothetical classes instead of ten for Criterion 3. We implemented

M3P as specified in Javanmard et al. (2020) with the only exception being that we required prices

to be discrete, constrained to the same set of possible price vectors Pt that our algorithm faced.

With this added constraint, the solution techniques proposed for the earning phases in Javanmard

et al. (2020) were not applicable and we instead solved for the optimal prices in both the M3P and

Fast Learning and Pricing for Varying Assortments algorithms by enumerating and evaluating all

possible price vectors. It is also worth noting that one of the modeling differences between our work

and Javanmard et al. (2020) is that they allow a different price vector to be offered to each customer

shopping assortment t, whereas we require a single price vector pt to be offered to all customers

shopping assortment t. Thus when implementing M3P in our simulations, we allowed each customer

to be offered a different price vector, even for customers shopping the same assortment.

As a benchmark for comparing the performance of each of the algorithms, we consider the

(unrealistic) case where the retailer knows βf and βp at the start of the selling season and for each

assortment t, uses this knowledge to offer the expected revenue-maximizing price vector:

p∗
t = arg max

pt∈Pt

3∑
i=0

pit ·
exp(xᵀ

itβ
f −xᵀ

itβ
ppit)∑3

l=0 exp(xᵀ
ltβ

f −xᵀ
ltβ
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. (6)

Note that (6) is the objective of the pricing to earn phase in Algorithm 1, with parameter estimates

β̂ft and β̂pt replaced with their true values βf and βp. Denote r̂OPTts as the revenue earned in

period t and simulation s when following this benchmark pricing policy. Similarly, denote r̂ALGts

as the revenue earned in period t and simulation s when following one of the other implemented

algorithms, ALG, where ALG can be either our Fast Learning and Pricing for Varying Assortments

algorithm or M3P with l= 1,5,10, or 15. To compare each algorithm with the benchmark policy,
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Figure 2 Percent of cumulative optimal revenue earned by our Fast Learning and Pricing for Varying Assortments

algorithm and M3P with l = 1,5,10, and 15.

we calculate the “percent of cumulative optimal revenue earned” for each period t= 1, ..., T and

for each ALG, as an average over all simulations:

1

200

200∑
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(∑t
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ls∑t

l=1 r̂
OPT
ls

)
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Figure 2 plots the percent of cumulative optimal revenue earned by each of the algorithms

implemented for each t=1,...,200. We note that the simulations were conducted for T = 200 periods,

although since the value T is not used in any of the algorithm implementations, one can easily

compare algorithm performance for any value of T ≤ 200. Figure 2 shows that after the first

few periods, our Fast Learning and Pricing for Varying Assortments algorithm outperforms all

implementations of M3P by a considerable margin. Importantly, our algorithm is able to achieve

these results even though it allows for only a single price vector p∗
t to be offered in each assortment

t, whereas M3P offers multiple price vectors in a single assortment. Furthermore, by period 25,

our algorithm has attained 95% of the cumulative optimal revenue earned over those periods,

highlighting our algorithm’s ability to learn utility model parameters and set (near-)optimal prices

very quickly. For the same milestone, it takes 75 periods for M3P with l = 1 and 100 periods for

M3P with l= 5; for larger l - equating to longer learning phases - it is clear that M3P spends too

much time in the learning phases and is not able to converge to the optimal prices quickly.

We believe the key reason for these results lies in how the algorithms learn demand. Our algorithm

conducts its pricing to learn phase in the initial periods and can then capitalize on that learning for
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the remainder of the season, whereas M3P spreads its learning episodically over the entire season.

Furthermore, our algorithm learns by offering the most informative price vectors - i.e., those that

maximize the determinant of the Fisher information matrix for (βf ,βp) - whereas M3P learns by

offering random price vectors.

4. Field Experiment

For the development and implementation of our work, we collaborated with Zenrez, an e-commerce

company that partners with fitness studios across the United States and Canada to sell excess

capacity of fitness studio classes. Every night at 9:00pm, Zenrez posts classes (i.e., products) that

have remaining capacity for the following day and offers them at a discounted price via a widget

located on the partner studios’ webpages or app. When a user views the widget, they see all next-

day classes offered by Zenrez for that fitness studio (see, e.g., Figure 1). Each class is characterized

by features such as class type (e.g., yoga, spin, etc.), duration, and day of week, and data supports

that it is reasonable to assume that a vast majority of consumers choose at most one class from

each daily assortment.

The assortment of classes changes each day, and prices can vary across assortments but are

fixed within each assortment in order to avoid negative customer perception (e.g., once classes are

posted, their prices do not change). Zenrez has the flexibility to choose an integer price for each

class within a studio-specified interval, [floor, ceiling], and earns a commission proportional to the

selling price for each class sold via their widget; note that the marginal cost to Zenrez of selling

an additional unit of capacity is negligible and thus revenue and profit are equivalent. The appeal

of purchasing last-minute classes from Zenrez rather than directly from the studio is that Zenrez

sells the classes at a discount. Since studios offer various types of volume discounts for frequent

customers, Zenrez’s customers are predominantly infrequent customers, supporting our assumption

that demand is independent over time.

4.1. Algorithm Implementation

To implement our Fast Learning and Pricing for Varying Assortments algorithm, we developed

a fully-automated pricing tool at Zenrez. Since assortments change every day, the length of each

period t is set to one day. The tool is run automatically every day for a given studio, setting prices

for the following day’s assortment of classes. Given the diversity across studios in terms of their

classes offered, locations, etc., as well as the observation that most customers only view classes

on Zenrez’s widgets from a single studio on a given day, we ran Algorithm 1 separately for each

studio. The average number of classes offered each day (Nt) varied by studio, ranging from 5 to

15. Features used in our demand model included: class type indicators, class duration, day of week

indicators, time of day indicators, and a star-instructor indicator.
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To solve for the optimal price vectors in the pricing to learn and pricing to earn phases, we first

checked if the number of possible price vectors in Pt was less than a studio-specific threshold that

we considered computationally feasible for complete enumeration and evaluation to optimality.

This threshold was determined based on extensive simulations using Zenrez’s historical data, as

well as the permissible run-time per studio (i.e., the time that prices must be set minus the time

that the assortment of classes is finalized by the studio). If the number of possible price vectors was

less than the threshold, then we enumerated all possible price vectors, and for each one, evaluated

either the determinant of the Fisher information matrix for the pricing to learn phase or the

expected current-period revenue for the pricing to earn phase; finally, we chose the price vector

which gave the maximum value. This was the approach used for over 95% of the assortments in

our field experiment, enabling us to calculate and use the optimal price vector. For the other < 5%

of the assortments in which the number of possible price vectors in Pt surpassed the threshold,

we used grid search to evaluate only a subset of the price vectors in Pt, and chose the one with

either the largest determinant of the Fisher information matrix in the pricing to learn phase or the

largest expected revenue in the pricing to earn phase. To choose the subset of prices, for each class

i, we selected prices from feasible price set Pit that were (approximately) equally spaced between

and including min{Pit} and max{Pit}.

For the switching criteria test (SWITCH ) input to our algorithm, we used a test of price stability:

intuitively, if the revenue-maximizing prices do not change when using recent periods’ parameter

estimates, there is likely little value in learning more precise parameter estimates, and our algo-

rithm switches from the pricing to learn phase to the pricing to earn phase. Specifically, SWITCH

evaluates to TRUE (and therefore triggers our algorithm to switch from the pricing to learn phase

to the pricing to earn phase) when the following three criteria are satisfied:

1. Minimum time in pricing to learn phase: t≥ 3.

2. Price stability for current assortment:
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(8)

3. Price stability for random assortment: First, generate a random assortment of i = 1, ...,10

hypothetical classes, where class i has feature vector xi ∈ Rd randomly selected (with equal

probability) from the set of all possible attribute values for each feature offered by that studio

in its history. Set the feasible price vector P for each price p= {p1, ..., p10} to be all integers
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between and inclusive of the minimum of all floor prices and maximum of all ceiling prices

offered by that studio in its history. Finally, we check the following equalities for price stability:
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Criterion 1 requires that we stay in the pricing to learn phase for at least three periods, essentially

to provide different parameter estimates for Criteria 2 and 3. Criterion 2 requires that the revenue-

maximizing price vectors from (5) are identical for the current period’s assortment when using

the last three periods’ parameter estimates. Similarly, for robustness, Criterion 3 requires that the

revenue-maximizing price vectors are identical for a random assortment when using the last three

periods’ parameter estimates. Meeting Criteria 2 and 3 signals that the parameter estimates are

likely sufficiently stable.

We chose these criteria for SWITCH after testing many other possibilities in our simulations

presented in Section 3.1. For example, and in line with many academic papers (e.g., Besbes and

Zeevi (2012)), one possibility of SWITCH that we tested was pre-selecting a switching period τ ,

independent of any studio-specific parameters. Another possibility of SWITCH we tested included

only the first two criteria described above, omitting Criterion 3; this tended to result in the algo-

rithm prematurely switching from the pricing to learn to pricing to earn phase, particularly when

a studio only offered a few classes on a given day. We also evaluated tests of parameter stability,

for example by requiring the difference between parameter estimates from the last three periods

to be less than a threshold; this tended not to work as well as our price stability SWITCH test

because for some parameters, although they still experienced changes larger than the threshold,

these changes did not impact the revenue-maximizing prices and therefore there was little value in

learning these parameters with more precision.

4.2. Experimental Design

To evaluate the effectiveness of our Fast Learning and Pricing for Varying Assortments algorithm,

we conducted a three-month, controlled field experiment where prices for studios in the treatment

group were set according to our algorithm while prices for studios in the control group were set

according to Zenrez’s existing pricing practices. For years, and like many retailers, Zenrez had been

pricing classes proportional to the historical utilization (percent of capacity sold) of near-identical

classes – those with the same instructor, class type, time of day, day of week, and duration (if

such classes existed). The most popular classes were priced at or near the ceiling of the feasible
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price set, and the least popular classes were priced at or near the floor of the feasible price set. If

near-identical classes did not exist for a class - which happened often - Zenrez would typically price

the class in the middle of the feasible price set. Our objective was to identify the impact of our Fast

Learning and Pricing for Varying Assortments algorithm on Zenrez’s primary metric of interest:

average daily revenue. Thus, the treatment effect we measured was the percent increase in average

daily revenue between studios in the treatment group compared to the control group for each of

the three months in the experiment. It is worth noting that although the field experiment was

pre-specified to last for three months, this length of time is independent of the length of the selling

season T that a given studio may face; instead, T is determined by things such as management’s

planning horizon, changes in the competitive landscape, and fitness trends. Thus, for selling seasons

lasting longer than 3 months - as is likely the case for many of the studios - we would expect that

results achieved in the pricing to earn phase of our algorithm in month 3 would persist until the

end of the season.

We identified a set S of 52 studios whose average daily revenue exceeded a minimum threshold

over the six months prior to the field experiment (the “pre-period”) and who had been continu-

ously operating the widget during this pre-period. Across these 52 studios, there was significant

heterogeneity in pre-period revenue and trends, which would make a simple difference-in-means or

difference-in-differences evaluation of treatment effects unreliable. Therefore, we decided to use syn-

thetic controls to estimate treatment effects. The synthetic controls method combines elements of

matching and difference-in-differences techniques to account for heterogeneity in pre-period trends

by finding a weighted average of studios in the control group whose trend in the pre-period closely

matches the pre-period trend for the studios in the treatment group; the trend that we matched

on was average daily revenue during each of the six months in the pre-period.

Specifically, define T to be the set of studios in the treatment group, where prices were set using

Algorithm 1, and define C = S \T to be the set of studios in the control group, where prices were

set using Zenrez’s existing pricing practices. Let rsm be the average daily revenue of studio s ∈ S

during month m. Considering pre-period months m= 1, ...,6, the synthetic control, w∗s ∀s ∈ C, is

calculated as

arg min
6∑

m=1

( 1

|T |
∑
s∈T

rsm−
∑
s∈C

wsrsm

)2

s.t.
∑
s∈C

ws = 1

ws ≥ 0 ∀s∈ C

. (10)

Intuitively, w∗s can be interpreted as the optimal weights assigned to control studios s∈ C which

provide a weighted average of control studios that best represents the average treatment studio with

respect to pre-period average daily revenue. If a high-quality synthetic control is obtained, then
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any difference in average daily revenue during the three-month experiment between the average

treatment studio and its synthetic control can be attributed to the impact of our algorithm. Refer

to Abadie et al. (2010) for a detailed description of the synthetic controls method.

To assign the 52 studios into treatment and control groups, it was important to ensure that

we would have a high-quality pre-period match between weighted average daily revenue of studios

in the control group and average daily revenue of studios in the treatment group, which would

allow us to effectively evaluate the outcome of the experiment. To do so, we iteratively conducted

the following steps, initially starting with all studios being unassigned to the treatment or control

group:

(i) For each unassigned studio, find its synthetic control using (10), where T is the unassigned

studio and C contains all of the other unassigned studios and studios already assigned to the

control group.

(ii) Choose the studio that has the best synthetic control, i.e., the studio that achieves the smallest

objective value from (10).

(iii) Assign this studio to the treatment group.

(iv) Assign studio s included in its synthetic control to the control group (if not already there)

as long as w∗s ≥ 0.02. Without applying a small threshold, too many studios are assigned to

the control group which do not significantly impact the quality of the synthetic control, and

only a few treatment studios would be identified.

We repeated these steps until all studios were assigned to the treatment or control groups. Using

this iterative approach, each of the last three unassigned studios had a poor-quality synthetic

control from the set of other unassigned studios and the control studios, so we assigned these final

three studios to the control group. Our approach resulted in |T | = 23 studios in the treatment

group and |C|= 29 studios in the control group. It is worth noting that studios did not know that

they were included in the experiment.

Given our approach used to identify studios for the treatment and control groups, our synthetic

control, w∗s ∀s ∈ C, was a near-perfect match to the average of studios in the treatment group

with respect to our matching criteria - average daily revenue. Because of this, we can attribute

the difference in average daily revenue during the three-month experiment to the impact of our

algorithm. Furthermore, Table 1 shows that our approach resulted in balance across studios in the

treatment and control groups over the six-month pre-period on a variety of characteristics. Note

that only 1.7% of the classes offered by Zenrez sell out during the pre-period, and thus we assume

that all demand can be met.
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Treatment Synthetic Control
Avg. Daily Revenue 1.00 1.00
Avg. Daily Purchases 1.00 0.95
Avg. Daily Classes 1.00 0.95
Avg. Price per Class 1.00 1.06
Avg. Widget Traffic 1.00 1.08
Unique Cities 11 13
Sell-Out Percent 1.6% 1.7%

Table 1 Summary statistics for the studios in the treatment and control groups over the six-month pre-period.

All metrics except Unique Cities and Sell-Out Percent are normalized to the studios in the treatment group’s

average pre-period values (averaged across all studios in the treatment group and all six pre-period months).

4.3. Results

The treatment effect that we measured was the percent increase in average daily revenue for each

of the three months in the field experiment, comparing average daily revenue across all studios in

the treatment group with its synthetic control. Specifically, our revenue treatment effect, R∗m, is

calculated for each month m as

R∗m =

1
|T |

∑
s∈T rsm−

∑
s∈C w

∗
srsm∑

s∈C w
∗
srsm

. (11)

Figure 3 Percent increase in average daily revenue of studios in the treatment group vs. that of their synthetic

control over the six-month pre-period (P1-P6) and three-month experiment (T1-T3). The start of the

experiment is indicated by a vertical dashed line.

Figure 3 illustrates the results of our experiment. First, we can see that we were able to attain a

very strong synthetic control; there is a near perfect match in average daily revenue for each of the
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six pre-period months (P1-P6) between treatment and synthetic control groups. Because of this, we

attribute the difference between average daily revenue during the three-month experiment (T1-T3)

to the impact of our algorithm. Compared to the synthetic control, the studios in the treatment

group experienced a dip in average daily revenue of 6.7% in the first month of our experiment and

an increase in average daily revenue of 14.1% and 18.2% in the second and third months of our

experiment, respectively. We note that this dip followed by gain is consistent with our expectations

that initial pricing to learn would yield a dip in revenue while subsequent pricing to earn would

lead to higher revenue in the long run. Over the three-month experiment, studios in the treatment

group experienced an 8.5% increase in average daily revenue compared to the synthetic control.

Since the revenue gains were persistent at well above 10% across the second and third months, it

is reasonable to expect that gains of a similar magnitude would endure over future periods if the

algorithm were run for longer.

To measure the significance of our monthly revenue treatment effects, we performed Random-

ization Inference with Fisher’s Exact Test to quantify the probability of observing our monthly

treatment effects under the null hypotheses that our algorithm had no effect on revenue each

month. Please see Appendix B for a description of the intuition behind the test and how we per-

formed the test to evaluate our field experiment. For each month, we use Fisher’s Exact Test to

empirically calculate a one-sided p-value representing the probability that we would observe more

than an R∗m increase in revenue in month m due to chance. The p-values for months m= 1,2,3 are

0.769, 0.062, and 0.054, respectively. Thus, we conclude that the initial dip in revenue in month

1 is unsurprising under the null hypothesis, whereas we have sufficient evidence to reject the null

hypotheses in months 2 and 3 at the 10% significance level and conclude that our algorithm had

a strong positive effect on revenue.

The majority of studios switched from the pricing to learn to pricing to earn phase within

20 days of the algorithm’s launch, while two studios took just over 30 days to make the switch.

Importantly, we see that our algorithm only required a very short pricing to learn phase, and was

quickly able to capitalize on that learning in the pricing to earn phase. This is a promising result

for many retailers who may not want to or may not be able to change prices multiple times within

each assortment: our results show that minimal price experimentation timed at the beginning of

each new assortment can reap huge payoffs as the season progresses, owed to the efficient learning

that our algorithm provides. Furthermore, when external factors change that may influence demand

model parameters - such as a competitor studio opening across the street - fast learning allows

retailers to restart the algorithm and quickly learn the new demand model parameters.

To better understand the effect of our Fast Learning and Pricing for Varying Assortments algo-

rithm, we analyzed prices and sales for the studios in the treatment group during the three-month
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experiment; results are shown in Figure 4. From Figure 4(a), we can see that the average price of an

offered class decreased by approximately 3.0% during the experiment compared to the six-month

pre-period. Unsurprisingly, demand was larger for the less expensive classes, and thus we see a

decrease by approximately 3.6% in the average selling price during the experiment. From Figure

4(b), we can see that the decrease of 3.6% in average selling price resulted in an increase of approx-

imately 15.6% in units sold over the three-month experiment, and an increase of approximately

26.0% in the second and third months of the experiment when the algorithm was primarily pricing

to earn. This substantial increase in quantity sold from only a slight decrease in average selling

price led to the overall positive revenue results. It is worth noting that this increase in quantity

sold only resulted in a slight increase in the percent of classes that sold out, from 1.6% in the

pre-period to 1.9% during the experiment. Finally, Figure 4(c) shows that our algorithm increased

daily price variance, especially in the first month of the experiment when our algorithm was pre-

dominately pricing to learn. This is because the maximally informative price set - i.e., the price

set that maximizes the determinant of the Fisher information matrix - often prices some classes at

their upper bound and others at their lower bound, leading to high price variance. This observation

is consistent with the literature on conjoint analysis, which shows that numeric features are often

set at or near their boundaries (Kanninen 2002).

4.4. Alternative Evaluation Approach

When applying synthetic controls to multiple treatment units (studios), there are two approaches

that are commonly used in the literature. The approach that we used in Sections 4.2 and 4.3

averages (unweighted) all of the treatment units together, generates a single synthetic control for

the average treatment unit, and then estimates the treatment effect on that single treatment unit

(see, e.g., Kreif et al. (2016) and Robbins et al. (2017)). The second approach that can be used to

apply the synthetic control method to multiple treatment units generates a synthetic control for

each treatment unit separately, calculates the treatment effect for each treatment unit, and then

averages the treatment effects across all treatment units (see, e.g., Dube and Zipperer (2015) and

Abadie (2021)). In this section, we evaluate our field experiment using this second approach to

provide additional evidence and insights regarding how Algorithm 1 performs in practice.

For each treatment studio t∈ T , define synthetic control w∗st ∀s∈ C as

arg min
6∑

m=1

(rtm−
∑
s∈C

wstrsm)2

s.t.
∑
s∈C

wst = 1

wst ≥ 0 ∀s∈ C

. (12)

Note that (12) is equivalent to (10) when T contains only a single treatment unit.
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Figure 4 Impact of Algorithm 1 on price, quantity sold, and price variance for each of the three months in our

experiment, T1-T3. (a) Average price of classes offered and average price of classes sold by studios in

the treatment group, normalized by the average price of classes offered by studios in the treatment

group over the six-month pre-period. (b) Average quantity sold by studios in the treatment group,

normalized by the average quantity sold by studios in the treatment group over the six-month pre-

period. (c) Average variance in daily prices for studios in the treatment group, normalized by the

average variance in daily prices for studios in the treatment group over the six-month pre-period.

Using the synthetic controls w∗st, we define the revenue treatment effect averaged over all studios

t∈ T , RMult
m , for each month m as

RMult
m =

1

|T |
∑
t∈T

(rtm−∑s∈C w
∗
strsm∑

s∈C w
∗
strsm

)
. (13)

Figure 5 illustrates the results and includes intervals around each value of RMult
m which depict the

interquartile ranges for the percent increase in average daily revenue across all treatment studios.

Unsurprisingly, the quality of the synthetic controls for each treatment studio are not as strong

as the quality of the synthetic control for the average treatment studio; refer to Appendix C

for a detailed discussion. Nonetheless, we believe that the results of this approach still provide

valuable insights and support our findings in Section 4.3. Specifically, studios in the treatment

group experience a dip in average daily revenue of 10.0% in the first month of our experiment,

followed by an increase in average daily revenue of 14.9% and 13.4% during the second and third

months of our experiment, respectively. The magnitudes of these effects are in line with our findings

in Section 4.3, although we have more trust in the results in Section 4.3 due to the higher-quality

synthetic control. We cannot report on p-values for each studio in the treatment group because
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Figure 5 Mean percent increase in average daily revenue of treatment studios vs. their synthetic controls, RMult
m ,

over the six-month pre-period (P1-P6) and three-month experiment (T1-T3). The intervals around

each value of RMult
m depict the interquartile range for the percent increase in average daily revenue

across all treatment studios. The start of the experiment is indicated by a vertical dashed line.

the efficacy of Randomization Inference with Fisher’s Exact Test critically depends on the quality

of the synthetic controls.

Next, we use the synthetic controls w∗st to estimate revenue treatment effects for the pricing to

learn and pricing to earn phases - as opposed to monthly revenue treatment effects - which sheds

more light on the impact of our algorithm over time. With slight abuse of notation, we define rsL

and rsE to be the average daily revenue of studio s during that studio’s pricing to learn and pricing

to earn phases, respectively. We define the revenue treatment effect averaged over all studios t∈ T ,

RMultLE
m , for each of the six pre-period months m ∈ {P1, P2, P3, P4, P5, P6} and pricing to learn

and pricing to earn phases m∈ {L,E}, respectively, as

RMultLE
m =

1

|T |
∑
t∈T

(rtm−∑s∈C w
∗
strsm∑

s∈C w
∗
strsm

)
. (14)

Figure 6(a) illustrates the results; note that the values of RMultLE
m for each of the six pre-period

months m ∈ {P1, P2, P3, P4, P5, P6} are identical to those in Figure 5 since the same synthetic

controls, w∗st, are used. We see that the impact of our algorithm during the pricing to learn and

pricing to earn phases (m ∈ {L,E}) supports our previous findings. Specifically, studios in the
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Figure 6 Mean percent increase in average daily revenue of treatment studios vs. their synthetic controls,

RMultLE
m . The intervals around each value of RMultLE

m depict the interquartile range for the percent

increase in average daily revenue across all treatment studios. (a) RMultLE
m over the six-month pre-

period (P1-P6), pricing to learn phase (L), and pricing to earn phase (E); the start of the experiment is

indicated by a vertical dashed line. (b) RMultLE
m over the pricing to learn phase (L), first half of pricing

to earn phase (E1), and second half of pricing to earn phase (E2).

treatment group experience a substantial dip in average daily revenue of 17.4% during the short,

initial pricing to learn phase, followed by a substantial increase in average daily revenue of 10.7%

during the longer pricing to earn phase. Compared to the results in Figure 3, the 17.4% dip in

average daily revenue in the pricing to learn phase is more than the 6.7% dip in average daily

revenue of month 1 in the treatment period; this is to be expected since month 1 in the treatment

period includes both pricing to learn and pricing to earn phases for most studios. The effect in the

pricing to earn phase is perhaps a bit more surprising at first glance: compared to the results in

Figure 3 which show an increase in average daily revenue of 14.1% and 18.2% in months 2 and 3

of the treatment period, respectively, the increase in average daily revenue in our pricing to earn

phase is only 10.7%. It turns out that the reason behind this is that our algorithm still continues

to passively learn throughout the pricing to earn phase, updating parameter estimates with their

maximum likelihood estimator using all data observed up through the previous day. Thus, at the

beginning of the final month of the experiment, our algorithm has already learned from both the

pricing to learn phase and the beginning of the pricing to earn phase (typically more than half of
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this phase); in contrast, at the beginning of the pricing to earn phase, our algorithm has learned

from only the pricing to learn phase.

To illustrate this point, we ran a very similar analysis to what was presented above, except

instead of considering a single pricing to earn phase, we split the pricing to earn phase into two

phases of equal length for each studio: pricing to earn 1 (E1) and pricing to earn 2 (E2). Figure

6(b) illustrates the results, where period E from Figure 6(a) has been divided into E1 and E2.

These results indicate that indeed there is passive learning persisting beyond the initial pricing to

learn phase. Specifically, in the first half of the pricing to earn phase, studios achieve an average

increase in average daily revenue of 5.4%, while in the second half of the pricing to earn phase,

studios achieve an average increase in average daily revenue of 15.3%; it is reasonable to expect

that gains of a similar magnitude would endure over future periods if the algorithm were run for

longer. A similar increase in the revenue treatment effect can be seen between months 2 and 3

in Figure 3, although the increase is less pronounced, perhaps due to the choice of months rather

than pricing to learn, pricing to earn 1, and pricing to earn 2 phases and the fact that studios in

the treatment group have different lengths of each phase.

5. Conclusion

In this paper, we considered demand learning and pricing for a prevalent retail setting that has

received little attention in the literature to date - namely, that of retailers who offer assortments

of substitutable products that change frequently, e.g., due to limited inventory, perishable or time-

sensitive products, or simply the retailer’s desire to frequently offer new styles. Motivated by many

retailers’ desires to limit the number of price changes per assortment, we allow price changes to

occur only when assortments change. We introduced a novel algorithm - Fast Learning and Pricing

for Varying Assortments - that learns quickly in such an environment with varying assortments

and limited price changes by adapting the commonly used marketing technique of conjoint analysis

to our setting. A short learning phase is particularly important in our setting where retailers

want to minimize negative customer perception from volatile price experimentation, as well as for

retailers who have limited sales volume or a short selling season and thus cannot afford lengthy

experimentation. Furthermore, when external factors change that may influence demand, a short

learning phase allows retailers to restart the algorithm and quickly learn the new demand model

parameters. Despite its importance in practice, the algorithmic characteristic of a short learning

phase is rarely considered in the demand learning and pricing literature, and conjoint analysis has

yet to be proposed for this task.

Importantly, and unlike most other demand learning and pricing papers, we implement our

algorithm in practice and evaluate its effectiveness via a controlled field experiment. We illustrate
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how to use synthetic controls to estimate the treatment effect, a popular method recently proposed

to evaluate policy interventions. Relative to the control group, our algorithm led to an expected

initial dip in revenue during the pricing to learn phase, followed by a sustained and significant

increase in average daily revenue of 14-18% throughout the pricing to earn phase. The results of

our field experiment illustrate that our algorithmic contributions can make a significant impact in

practice, and we hope that our work will inspire other retailers to implement our algorithm.

For future academic work, we believe that some of the same components of our algorithm could

be used to help develop algorithms for other, related problems. For example, a natural extension of

our model is to consider demand learning with joint price and assortment optimization, applicable

for retailers who make these decisions simultaneously. Although we use conjoint analysis to help

determine a single attribute value (price), conjoint analysis has historically been used to simulta-

neously determine multiple attribute values using a choice set that is constrained in size; thus we

believe extending conjoint analysis for use in the learning phase of a joint price and assortment

optimization problem might be possible.

More broadly, we hope that our work encourages other researchers to consider operations and

marketing problems targeted for retailers with frequent assortment changes, limited sales volume,

and/or an interest in limited price changes. Finally, we hope that our work serves as a moti-

vating example to illustrate the benefit of borrowing ideas from multiple literatures - operations

management, marketing, and computer science, in our case - to make a big impact in practice.
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Appendix A Proof of Proposition 1

For any period t, define the random variable Zt ∈ {0,1, ...,Nt} to represent the product that a

customer shopping assortment t purchases. Its probability mass function given unknown parameters

(βf ,βp) is

f(Zt = i|βf ,βp) = qit =
exp(xᵀ

itβ
f −xᵀ

itβ
ppit)∑Nt

l=0 exp(xᵀ
ltβ

f −xᵀ
ltβ

pplt)
∀i= 0,1, ...,Nt. (15)

We will first determine the Fisher information IZt(β
f ,βp) in Zt, and then extend this to multiple

customer arrivals and assortments. Note that since (βf ,βp) ∈ R2d, Fisher information will be

represented as a 2d-square matrix:

IZt(β
f ,βp) =

Nt∑
i=0

[
qit

(
∂ lnf(Zt = i|βf ,βp)

∂(βf ,βp)

)(
∂ lnf(Zt = i|βf ,βp)

∂(βf ,βp)

)>]
. (16)

We have

lnf(Zt = i|βf ,βp) = (xit,−xitpit)>(βf ,βp)− ln

[ Nt∑
l=0

exp (xlt,−xltplt)>(βf ,βp)

]
, (17)

and taking the derivative yields

∂ lnf(Zt = i|βf ,βp)
∂(βf ,βp)

= (xit,−xitpit)−
Nt∑
l=0

qlt(xlt,−xltplt). (18)

Substituting into (16) gives us

IZt(β
f ,βp) =

Nt∑
i=0

[
qit

(
(xit,−xitpit)−

Nt∑
l=0

qlt(xlt,−xltplt)

)(
(xit,−xitpit)−

Nt∑
l=0

qlt(xlt,−xltplt)

)> ]
.

(19)

For period t, we observe mt random samples from Zt. Since the Fisher information in a random

sample of size n is simply n times the Fisher information of a single observation, the Fisher

information matrix for period t is It(β
f ,βp) = mtIZt(β

f ,βp). Similarly, the Fisher information

matrix over τ periods is

I(βf ,βp) =
τ∑
t=1

mtIZt(β
f ,βp) =

τ∑
t=1

mt

Nt∑
i=0

[
qit

(
(xit,−xitpit)−

Nt∑
l=0

qlt(xlt,−xltplt)

)(
(xit,−xitpit)−

Nt∑
l=0

qlt(xlt,−xltplt)

)> ]
.

(20)
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Appendix B Randomization Inference with Fisher’s Exact Test

To measure the significance of our monthly revenue treatment effects, we performed Randomization

Inference with Fisher’s Exact Test to quantify the probability of observing our monthly treatment

effects under the null hypotheses that our algorithm had no effect on revenue each month. Please

refer to Ho and Imai (2006) for details on this test. In what follows, we provide the intuition behind

the test and then explain the details for how we performed the test to evaluate our field experiment.

If the null hypotheses that our algorithm had no impact on each month’s revenue were true,

then the percent increase in average daily revenue that we observed (-6.7% for month 1, 14.1% for

month 2, and 18.2% for month 3) would be likely to occur due to chance. In other words, if the

null hypotheses were true, it should make no difference which studios were labeled as “treatment

studios” and which studios were labeled as “control studios” since the treatment of implementing

the algorithm had no impact on revenue. Thus, we will proceed with Fisher’s Exact Test by repeat-

edly randomly labeling studios as treatment or control studios and calculating the percent increase

in average daily revenue between the two groups for each month. This will create an empirical

distribution for each of the monthly revenue treatment effects under the null hypotheses, Rm for

months m= 1,2,3 in the treatment period, and we can determine where along that distribution

lies the value of our true monthly treatment effect R∗m - using the correctly labeled treatment and

control studios - providing us with p-values for the probability that the revenue treatment effect

would exceed what was observed due to chance. This test is exact in the sense that it does not

depend on large sample approximation and is distribution-free because it does not depend on any

distributional assumptions.

Let j = 1, ...,50,000 index the random labeling of studios to treatment vs. control groups, and

let Tj and Cj represent the sets of studios labeled as the treatment and control groups for the

random labeling j, respectively. For each random labeling j, we averaged the daily revenue across

all studios s ∈ Tj for each of the six months in the pre-period, and identified a synthetic control

using studios s ∈ Cj whose revenue in each of the six pre-period months closely matched that of

the average of studios in Tj. Define wjs to be the resultant synthetic control weight calculated via

(10) assigned to each studio s ∈ Cj. We can then calculate the revenue treatment effect for each

random labeling j, Rj
m, for each month m= 1,2,3 in the treatment period as

Rj
m =

1
|Tj |

∑
s∈Tj

rsm−
∑

s∈Cj
wjsrsm∑

s∈Cj
wjsrsm

. (21)

Note that this is the same procedure we used to estimate the monthly treatment effects for the

true experiment. In order to be consistent with the true randomization process, we discarded all

random labelings j for which the synthetic control over the pre-period was poor, resulting in a loss

of less than 5% of all random labelings.
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Figure 7 For each month m = 1,2,3 in the treatment period, Randomization Inference results using Fisher’s

Exact Test show the empirical distributions of revenue treatment effects under the null hypotheses,

Rm, with the actual treatment effects, R∗m, represented by red vertical lines. The one-sided p-value

shown for each month is empirically calculated as Pr(Rm ≥R∗m).

Figure 7 plots a histogram of the values of Rj
m for months m= 1,2,3 in the treatment period,

which can be interpreted as the empirical distribution of Rm for each month. As we would expect

under the null hypotheses, E[Rm] = 0 for m= 1,2,3, since the random labeling of studios to treat-

ment and control groups should have no impact on average daily revenue. We can use this empirical

distribution of Rm to calculate a one-sided p-value for each month to measure the significance of

our monthly revenue treatment effects. Specifically, for month m= 1,2,3, we can empirically cal-

culate the one-sided p-value as Pr(Rm ≥R∗m); this is the probability that we would observe more

than an R∗m increase in revenue in month m due to chance. From the p-values presented in Figure
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7, we conclude that the initial dip in revenue in month 1 is unsurprising under the null hypothesis,

whereas we have sufficient evidence to reject the null hypotheses in months 2 and 3 at the 10%

significance level and conclude that our algorithm had a strong positive effect on revenue.
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Appendix C Studio-Specific Synthetic Controls

Figure 8 shows the synthetic control weights, w∗st, for each treatment studio; treatment studios are

ordered by the quality of their synthetic control which goes hand-in-hand with the order in which

they were selected in the iterative approach described in Section 4.2. As the iterative approach

selects studios for the treatment group, the quality of synthetic control degrades. To illustrate this,

Figure 9 shows the percent difference in average daily revenue between the treatment studio and its

synthetic control for each of the six pre-period months for treatment studios 1-3 (the three highest-

quality matches). Similarly, Figure 10 illustrates the percent difference in average daily revenue

between the treatment studio and its synthetic control for each of the six pre-period months for

treatment studios 21-23 (the three lowest-quality matches); the quality of matches for these studios

is much worse. Specifically, for each treatment studio t= 1,2,3,21,22,23 and pre-period month m,

Figures 9 and 10 show

%Difftm =
rtm−

∑
s∈C w

∗
strsm∑

s∈C w
∗
strsm

. (22)

Note that the quality of the synthetic control is much higher when using the average daily revenue

over all treatment studios as our treatment unit, as we did in Sections 4.2 and 4.3; the last column

of Figure 8 shows the synthetic control weights w∗s ∀s∈ C for this average treatment unit.
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Figure 8 For each control studio s ∈ C, synthetic control weights w∗st for each treatment studio t; for example,

the synthetic control weight on control studio 7 for treatment studio 2 is 0.18. The last column presents

synthetic control weights w∗s ∀s∈ C for the average treatment unit.

Figure 9 Percent difference in average daily revenue, %Difftm, over the 6-month pre-period for the first three

assigned treatment studios, t = 1,2,3.
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Figure 10 Percent difference in average daily revenue, %Difftm, over the 6-month pre-period for the last three

assigned treatment studios, t = 21,22,23.


	Introduction
	Literature Review

	Model
	Fast Learning and Pricing for Varying Assortments
	Comparison with M3P Algorithm

	Field Experiment
	Algorithm Implementation
	Experimental Design
	Results
	Alternative Evaluation Approach

	Conclusion
	Proof of Proposition 1
	Randomization Inference with Fisher's Exact Test
	Studio-Specific Synthetic Controls

